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embeddings into a common cross-lingual

n Introduction

embedding space®'®. However, these effective
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Neural Machine Translation (NMT), a data-
hungry technology, suffers from the lack of
bilingual data in low resource constraints!' 7=,
To overcome the challenge that exists in small-
scale translation or low resource translation
tasks, several kinds of research focus on the
approaches such as pre-training with large scale
monaolingual data and fine-tuning with a small-

8[101[19]

scale corpu , or using the unsupervised

methods and mapping the monolingual vector

methods need relatively high computation!'?’.

In this paper, we proposed a framework based
on SMT and highly accurate word alignment
methods SpanAlign and AWESoME-align, to
explore the feasibility of low resource language
translation. We use both the original order
sentences and pre-ordered sentences as input
because, with the help of high precision word
alignment, it is hard to predict which side as

input will be translated in a better result. Since



we focus on the limitation of the low resource
language pairs, we use the Asian Language
Tree bank corpus, which contains 20,000
parallel sentences as the base corpus. We
do the experiments between the directions
of the Japanese, Chinese, English, Bengali,
Filipino, Hindi, Indonesian, Malay, and Thai, while
Japanese is either the source side or the target
side. The experimental results show that our
proposed framework significantly outperforms
an NMT based on the Transformer-base, and
except for Ja-Th, the best results of each

language pairs outperformed Transformer-small.

E Related Work

Although preordering has often been used in
SMT related works, some studies have recently
applied preordering to NMT. Kawara et al.”!
discusses the influence of word order on the
NMT model and concludes that it is important to
keep the consistency between the input source
word order and the output target word order,
to improve the translation accuracy. Murthy et
al.!"V proposed a transfer learning approach for
NMT, that trains an NMT model on an assisting
language-target language pair, and improves
the translation quality in extremely low-resource
scenarios. Nevertheless, those methods both
rely on the neural network translation model or
separately pre-training a translation model by
a large-scale corpus. In contrast, our proposed
framework has no neural translation component
and we focus on the translation task limited to

a small-scale corpus.

The Framework Based on SMT
and Word Alignment

As shown in Figure 1(a). for the beginning
of the process, we fine-tune the multilingual

BERT-based word aligner using the manually

made word alignment data or parallel corpus.
Then we use the word alignment model to
align words in the training sentences, while
the word alignment data is used to train the
Moses model, consisting of the phrase table'
and statistical-based language model. At last,
the original order test data or preordered test
data is translated by the phrase-based SMT
model. On the other hand, Figure 1(b) shows the
procedure to create preordered test data.

The word alignment of the training corpus is
also used to train the Pointer Network. Then the
trained Pointer Network transforms the original

order test data into preordered test data.

3.1 Multilingual BERT-based Word
Aligners

02l which

The first method is SpanAlign
extracts alignments with reading comprehension
style, that inputs with the source language
sentence and target language sentence,
and predicts a span in the target sentence
corresponding to the word in the source
sentence enclosed between the two boundary
symbols. This approach allows for high precision
alignment even with less word alignment fine-
tuning data in a supervised way.

The second method is AWESoME-align'®,
which, on the other side, can be fine-tuned in an
unsupervised way by adjusting the embedding
distribution of mBERT output to achieve word
alignments. The advantage is that this method
does not require manually made word alignment
data.

In our experiments, we fine-tune SpanAlign

1 Unlike the conventional pre-ordering translation, in
our case, the phrase table is made in the original
order, which means, we did not use the pre-ordered
sentences to learn the probability of the phrase
table. We also tried making the phrase table
after pre-ordering the training data, however, the
translation BLEU score is lower than that made by
the original order data.
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Figure 1: Our proposed framework.

and AWESoME-align respectively and compare
them with the unfine-tuned (directly using
parameters of pre-trained mBERT) AWESoME-
align. Because of the supervised attribute of
SpanAlign, we only leverage it on Ja-En and Ja-

Zh pairs.

3.2 Pre-ordering by Pointer Network
3.2.1 Architecture

The pre-ordering process transforms the
orders of the tokens in a source sentence to
those of the tokens in its target sentence
before translation is performed. Figure 3
shows an example of transferring a Japanese
sentence.

The original Pointer Network!'® is an LSTM™
based neural network, which aims at solving
graph theory problems such as the traveling
salesman problem and convex hull. Structurally,
an encoding RNN converts the input sequence
to a vector that is fed to the generating
network. And at each step, the generating
network produces a vector that modulates

a content-based attention mechanism over

inputs.
The output of the attention mechanism is a
softmax distribution with a dictionary size eqgual

to the length of the input.
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Figure 2: Architecture of Pointer Network for sequence
order transformation (the modified Pointer Network
accepts the original order sequence as input, and
outputs the pre-ordered sequence).

Inspired by this, we apply Pointer Network
to word order rearrangement like Figure 2.
Specifically, we replace the input of Pointer
Network with a sequence of the token instead,
and then add an embedding layer to represent
words with vectors. At decoding time, the
decoder predicts the next pointer probability

p(Ci| Cy, ..., Ciy, P) relying on inputs and predicted

outputs :




u; =T tanh(WIej +W,d) j=1..n
(G |G,....C; 1, P)=softmax(u’)

where softmax normalizes the vector (of length
n) to be an output distribution of inputs. P is the
input sentence, and C; is the token of the output
sentence, ' is the vector. Parameters v, w1, are
learnable parameters of the output model, and
¢, d; represent the encoder state and decoder
state, respectively.

3.2.2 Phrase-based Translation

Phrase-based SMT (PSMT) is found more
efficient than word-based SMT framework
thanks to the use of multi word translation units
™ and for the translation part, the phrase table
plays a significant role. Bilingual phrase tables
can be simply seen as lists of terms (words or
phrases) in one language associated with their
translations in a second language. Therefore,
Phrase-based translation is a process that, for
each token in the source sentence, retrieves
and outputs the most appropriate target tokens
in the built-up phrase table.

In our approach, for the translation model
input, we use both original order sentences
and preordered sentences as the SMT input.
Specifically, we replace the original SMT
alignment method GIZA++? with SpanAlign
and AWESoME-align, and follow the workflow of
normal SMT.

# Original order sentence === ﬂ-\ (; £ b“ y?%
Pre-order I
3 Pre-ordered sentence ===== *L\ (i !l}é =1 b{

Qoo | /)

sk Target sentence ======== I like black

Figure 3: Transform the word order of the source Japanese to
the target English before translation.

2 https://github.com/moses-smt/giza-pp

n Experiments

4.1 Dataset

We use the ALT!® (Asian Language
Treebank)® as our main experiment corpus of
setting Japanese on either the source side or
target side, about 20K sentence pairs for each
language pair. Others are Chinese, English,
Bengali, Filipino, Hindi, Indonesian, Malay, and
Thai. Parallel data are divided into the training
data (18K), dev data (1K), and test data (1K).

4.2 Experimental Settings
4.2.1 Word Aligner Settings

For SpanAlign, we use the ALT Ja-En dev
data of word alignment to fine-tune for Ja-En
pair. For Ja-Zh, we use about 3,000 sentences
of in-house word alignment data to fine-tune
SpanAlign. Specific hyperparameters have
followed as default, while the training batch
size is set to 8 and the training epoch is set
to 10. The average extraction threshold on
bidirectional sides is 0.4. We did not conduct
experiments based on other hyperparameters,
S0 our choice may not be the most optimal.

For AWESoME-align, unsupervised data all
comes from ALT dev data. The setting of the
fine-tuning step of the training epoch as well as

batch size is consistent with the SpanAlign.

Table 1: P, R, and F1 score of each alignment approaches
of En-Ja. After fine-tuning, the precision of
unsupervised AWESoME-align can reach the same
level of supervised SpanAlign, while for the recall
there remains still a gap.

Alignment Approach P R F1 score
GIZA++ 0.54 0.55 0.54
AWESOME-align 0.71 0.46 0.56
SpanAlign 0.79 0.86 0.83
AWESoME-align (fine-tuned) 0.79 0.58 067

4.2.2 Pointer Network Settings

Training data for the Pointer network are the

3 https://www2.nict.go.jp/astrec-att/member/
mutiyama/ALT/
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training data of original order sentences and

pre-ordered sentences made by the alignments
generated by SpanAlign. We use a 2-layer
bidirectional LSTM, with a hidden state of 512
and an embedding state of 128. And we set the
training batch size to 16, the learning rate to
3e-4, the training epoch is 10, max sequence
length to 120. After training, the weighted
Pointer Network is used to do the pre-ordering
operation for test data sentences. We exploit
RIBES™ an efficient measure for automatically
evaluating machine translation qualities
based on the order of words, to evaluate the

performance of the Pointer Network.

Table 2: RIBES result of Pointer Network trained by
word alignments extracted by each approach, of
transferring Japanese order into English order.

Model RIBES

Manual Word Alignment 0.761
GIZA++ 0.631
AWESoME-align 0.623
SpanAlign 0.751
AWESoME-align (fine-tuned) 0.722

4.3 Statistical Machine Translation
We use Moses™* to make the phrase table,
and the maximum length of each phrase is set
to 3. We use a statistical-based trigram LM
(Language Model), which is learned by target
side sentences contained in the training part
corpus, to ensure the fluency of the output
sequence. Furthermore, we use dev data and
MERT!"? joint with batch MIRA® to adjust the
weight of the translation model. Note that all
data used for SMT is token-based, we did not

learn the BPE to further split the tokens.

4.4 Results
4.4.1 Pointer Network Performance
Because there is no ALT Chinese-Japanese

manual alignment data that exists for

4  https://www.statmt.org/moses/

evaluation, we only use Japanese and English
data to verify the performance of the Pointer
Network. Table 1 shows the F1 score between
SpanAlign and AWESoME-align, demonstrating
the high alignment accuracy.

Table 2 shows the result of the score of the
preordered test data for transferring Japanese
order into English order verified by RIBES. Here,
we see ALT Japanese manual alignment data
as the reference. From the results, Pointer
Network trained with tokens extracted from
SpanAlign and AWESoME-align (fine-tuned) are
nearly the same as that of manual alignment,
though the fine-tuned AWESoME-align is left
behind. It can be considered that Pointer
Network successfully learned certain language
order features which are effective for the pre-

ordering task.

Table 4: BLEU scores between the phrase-based translation
of different phrase table length. ‘Pre’ represents for
‘Pre-order input’, while ‘Ori’ represents for ‘Original
input’ and ‘FT is short for ‘fine-tuned’ .

Lpr=3 Lpr=5
Model
Pre Ori Pre Ori
GlZA++ 8.33 8.05 8.40 8.36
SpanAlign 1161 9.83 8.85 8.47
En—Ja | AWESOME- | 1086 | 915 | 1235 | 988
align FT
AWESOME-
align FT 11.33 | 10.18 | 1242 | 1040
+ MERT
SpanAlign 10.11 8.24 8.59 7.84
AWESOME- | 1565 | 991 | 1080 | 965
7Zh — Ja align FT
AWESOoME-
align FT 1080 | 1020 | 11.24 | 967
+ MERT

4.4.2 Translation Accuracy

As a criterion to verify the translation
accuracy, we use the BLEU"* score. And we
select Transformer-base and Transformer-

! as our baseline. Table 3 shows the

small™’
translation accuracy of our proposed method
with the alignment approach of SpanAlign and
AWESoME-align (FT), also the accuracy of the

baseline. From the two sets of the results, using



https://www.statmt.org/moses/

SpanAlign as an aligner is better than fine-tuned
AWESoME-align for Enda, nevertheless, using
AWESoME-align as an aligner is better than
Spanalign for Ja-Zh. The factor that causes this
result is that, for En-Ja, both aligners are fine-
tuned by dev data in ALT, while for Ja-Zh, the
fine-tuning data of SpanAlign comes from in-
house rather than ALT, so there are differences
in specific domains. In addition, the results
under various experimental conditions of our
proposed framework are superior to Transformer-
small.
4.4.3 Influence of the Length of Phrase Table
We explore the influence of the length of
the phrase table on translation results in En-
Ja and Zh-Ja directions, which is shown in
Table 4. For SpanAlign, we are surprised to

find that when a phrase table with length 5 is

used for translation, the translation accuracy
decreased compared with that of length 3. In
contrast, when the length of the phrase table
is changed from 3 to 5 using AWESOME-align
in the En-da direction, the accuracy of the
translation is improved regardless of whether
pre-order or original order is used as the input.
For the translation of AWESoME align in the Zh-
Ja direction, the result with pre-order as input

improved, while original order as input decreased

E Conclusion and Future Work

In this paper, we propose a framework for low
resource translation using SMT joint with highly
accurate word alignment method SpanAlign
and AWESoME-align rather than a seguence-to-

seguence neural translation model. We use both

Table 3: BLEU score between two types of Transformer baseline and proposed method with alignment approach of SpanAlign =
and AWESoME-align (FT). FT represents for ‘fine-tuned . T for significant (p < 0.05) difference with baseline, and 1 for ?ﬁ
significant (p < 0.05) difference of higher of the result of original input or pre-ordered input with the other side.

Ja—En En—Ja Ja—Zh Zh—Ja
Model - - - - @
Pre Ori Pre Ori Pre Ori Pre Ori |"]
Transformer-base - 8.12 591 - 4.08 - 6.14 =
Transformer-small - 7.02 - 10.64 - 6.33 - 9.83 J:
PSMT+SpanAlign 874 t 923 T+% 11611t 9.83 717 1 836 11 1011 1 8.24
PSMT+AWESOME FT 8.36 922 1Tt | 10868 Tt 9.15 9.30 t 949 t 1062 Tt 9.91
PSMT+fMVVEERSToME Fr 8.37 96511 1133 1t% 10.18 929 t 1004 % | 1080 T 10.20
Model Ja—Bg Bg—Ja Ja —Fil Fil = Ja
Pre Ori Pre Ori Pre Ori Pre Ori
Transformer-base - 6.03 4.45 - 3.26 - 4.65
Transformer-small - 11.25 - 7.63 - 7.32 - 7.76
PSMT+AWESOME FT 10.97 10.64 886 T 928 t 784 1%t 7.02 892 1T+t B6.75
PSMT++A,\\2\IEEHSTOME Fr 1296 t 1290 t 8.89 t 922t 848 t 8.24 t 890 t ¢t 7.85
Ja—Hi Hi —Ja Ja—1d Id—Ja
Model
Pre Ori Pre Ori Pre Ori Pre Ori
Transformer-base - 5.93 - 4.92 - 2.04 - 5.68
Transformer-small - 13.11 - 8.44 - 5.23 - 9.03
PSMT + AWESOME FT 13.20 13.33 1132 1% 10.70 598 t 5.62 1031 1t 7.19
POMTHANESOME FT 15851 | 16171 | 11321+ | 10841 | 683+ | 6711 | 10351 | 873
Ja— Ms Ms — Ja Ja—Th Th—Ja
Model - - - -
Pre Ori Pre Ori Pre Ori Pre Ori
Transformer-base - 2.32 - 6.00 - 487 - 556
Transformer-small - 5.18 - 9.28 - 7.25 - 7.84
PSMT + AWESoOME FT 66211t 6.07 Tt 993 t ¢t 7.34 4.64 4.70 6.35 5.99
PO A ooME T 6541 | 7541 |986tt | 883 6.33 6.36 7.96 1 7.25
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pre-ordered sentences which are preordered by
Pointer Network, and original order sentences as
input and perform the phrase-based translation.
The results exceed the baseline of Transformer-
base and Transformer-small except for Ja-Th
and Th-da for high precision alignment. In future
work, we will apply our approach with highly
accurate word alignment to other language

pairs.
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